Visit Indian Travel Sites
Goa,
Kerala,
Tamil Nadu,
Andhra Pradesh,
Delhi,
Rajasthan,
Uttar Pradesh,
Himachal Pradesh,
Assam,
Sikkim,
Madhya Pradesh,
Jammu & Kashmir
Karnataka
|
NASA's Dawn finds hydrogen on giant asteroid Vesta | Vesta, the giant asteroid, has its own version of ring around the collar, NASA’s Dawn spacecraft has found. Two studies based on observations from the low-altitude mapping orbit of the Dawn mission, show volatile, or easily
evaporated, materials have coloured Vesta’s surface in a broad swath around its
equator. The volatiles were released from minerals likely containing water. Pothole-like
features mark some of the asteroid’s surface where the volatiles boiled off. Dawn
did not find actual water ice at Vesta. However, it found evidence of hydrated
minerals delivered by meteorites and dust in the giant asteroid’s chemistry and
geology. One study, led by Thomas Prettyman, the lead scientist for Dawn’s gamma
ray and neutron detector (GRaND) at the Planetary Science Institute in Tucson
, Ariz. , describes how the instrument found signatures of hydrogen, likely in
the form of hydroxyl or water bound to minerals in Vesta’s surface. “The source
of the hydrogen within Vesta’s surface appears to be hydrated minerals delivered
by carbon-rich space rocks that collided with Vesta at speeds slow enough to preserve
their volatile content,” said Prettyman. Another study, led by Brett Denevi, a
Dawn participating scientist at the Johns Hopkins University Applied Physics Laboratory
in Laurel, Md., describes the presence of pitted terrain created by the release
of the volatiles. Vesta is the second most massive member of our solar system’s
main asteroid belt. Dawn was orbiting at an average altitude of about 130 miles
(210 kilometers) above the surface when it obtained the data. Dawn left Vesta
on Sept. 5 EDT (Sept. 4) and is on its way to a second target, the dwarf planet
Ceres. Scientists thought it might be possible for water ice to survive near the
surface around the giant asteroid’s poles. Unlike Earth’s moon, however, Vesta
has no permanently shadowed polar regions where ice might survive. The strongest
signature for hydrogen in the latest data came from regions near the equator,
where water ice is not stable. In some cases, space rocks crashed into these deposits
at high speed. The heat from the collisions converted the hydrogen bound to the
minerals into water, which evaporated. Escaping water left holes as much as six-tenths
of a mile (1 kilometer) wide and as deep as 700 feet (200 meters). Seen in images
from Dawn’s framing camera, this pitted terrain is best preserved in sections
of Marcia crater. “The pits look just like features seen on Mars, and while water
was common on Mars, it was totally unexpected on Vesta in these high abundances,”
said Denevi. “These results provide evidence that not only were hydrated materials
present, but they played an important role in shaping the asteroid’s geology and
the surface we see today,” he added. GRaND’s data are the first direct measurements
describing the elemental composition of Vesta’s surface. Dawn’s elemental investigation
by the instrument determined the ratios of iron to oxygen and iron to silicon
in the surface materials. The new findings solidly confirm the connection between
Vesta and a class of meteorites found on Earth called the Howardite, Eucrite and
Diogenite meteorites, which have the same ratios for these elements. In addition,
more volatile-rich fragments of other objects have been identified in these meteorites,
which supports the idea the volatile-rich material was deposited on Vesta. The
findings appeared in the journal Science.
|
|
|
|
|
|